

Microsoft T-SQL Performance Tuning
Part 3: Query Optimization Strategies

Adapted from “Transact-SQL Programming” By Kevin Kline, Andrew Zanevsky, and Lee Gould. Published by
O’Reilly & Associates. ISBN: 1565924010

By Kevin Kline, Senior Product Architect for SQL Server

Contents
Introduction...3

Overview ...3

Subqueries Optimization ...4

UNION vs. UNION ALL..5

Functions and Expressions that Suppress Indexes..7

UPDATE…FROM and DELETE…FROM..8

SET NOCOUNT ON..11

TOP AND SET ROWCOUNT..11

Assumptions About Temporary Table Size..13

Loop Optimization...14

Querying Against Composite Keys..15

Summary... 16

About Quest Software... 17

2

Microsoft T-SQL Performance Tuning
Part 3: Query Optimization Strategies

By Kevin Kline

Introduction
This article is the third in a series that describes a variety of performance tuning techniques that
you can apply to your Microsoft SQL Server Transact-SQL programs. In many cases, you
could use the graphic user interface provided in the Microsoft tools to achieve the same or
similar results to those described here. For example, the graphic showplan feature of SQL
Query Analyzer will show you the query plan for a query. However, this series focuses on
using Transact-SQL commands as the basis for our solutions. All examples and syntax are
verified for Microsoft SQL Server 2000.

Other articles in this series cover topics like:

1. Datatype tuning

2. Tuning through database and table partitioning

3. Indexing strategies

4. Query optimizer strategies

5. SHOWPLAN output and analysis

6. Optimizer hints and Join techniques

7. Query tuning tips & tricks

Overview
These articles illustrate, through examples and explain plans, useful techniques for improving
queries in Microsoft SQL Server 2000. There are a number of small tips and techniques
applicable in narrow classes of programming tasks. Knowing them expands your resources in
performance optimization. We have chosen to use Microsoft SHOWPLAN_ALL output in all
examples in this section, because they are more compact and still show all the critical
information. (Just as an FYI, Sybase’s query plans are essentially the same for our sample
queries though they include some additional messages).

Note: Most examples are based on either the PUBS database or on standard system tables. I
have greatly expanded the size of the tables used in the PUBS database adding tens of thousands
of rows to many tables.

3

Subqueries Optimization
As a good rule of thumb try to replace all subqueries with joins. The optimizer may sometimes
automatically flatten out subqueries and replace them with regular or outer joins. But it doesn’t
always do a good job at that. Explicit joins give the optimizer more options to choose the order
of tables and find the best possible plan. When you optimize a particular query, investigate if
getting rid of subqueries makes a difference.

Example
The following queries select the names of all user tables in the pubs database and the clustered
index name for each table if one exists. If there is no clustered index, then table name still
appears in the list with a dash in the clustered index column. Both queries return the same
result set, but the first one uses a subquery, while the second employs an outer join. Compare
the query plans produced by Microsoft SQL Server.

Subquery Solution Join Solution

SELECT st.stor_name AS 'Store',
 ISNULL((SELECT SUM(bs.qty)
 FROM big_sales AS bs
 WHERE bs.stor_id = st.stor_id)
 AS 'Books Sold'
FROM stores AS st
WHERE st.stor_id IN
 (SELECT DISTINCT stor_id
 FROM big_sales)

SELECT st.stor_name AS 'Store',
 SUM(bs.qty) AS 'Books Sold'
FROM stores AS st
JOIN big_sales AS bs
 ON bs.stor_id = st.stor_id
WHERE st.stor_id IN
 (SELECT DISTINCT stor_id
 FROM big_sales)
GROUP BY st.stor_name

SQL Server parse and compile time:
 CPU time = 28 ms,
 elapsed time = 28 ms.
SQL Server Execution Times:
 CPU time = 145 ms,
 elapsed time = 145 ms.

SQL Server parse and compile time:
 CPU time = 50 ms,
 elapsed time = 54 ms.
SQL Server Execution Times:
 CPU time = 109 ms,
 elapsed time = 109 ms.

Table 'big_sales'. Scan count 14, logical reads
1884, physical reads 0, read-ahead reads 0.
Table 'stores'. Scan count 12, logical reads 24,
physical reads 0, read-ahead reads 0.

Table 'big_sales'. Scan count 14, logical reads 966,
physical reads 0, read-ahead reads 0.
Table 'stores'. Scan count 12, logical reads 24,
physical reads 0, read-ahead reads 0.

Without probing deeper, we see that the join was faster in terms of both CPU and total elapsed
time, requiring almost half as many logical reads as the subquery solution. Incidentally, the
result sets are the same in both cases, though the sort orders are different because the join
query (with its GROUP BY clause) has an implicit ORDER BY:

Store Books Sold
-- -----------
Barnum's 154125
Bookbeat 518080
Doc-U-Mat: Quality Laundry and Books 581130
Eric the Read Books 76931
Fricative Bookshop 259060
News & Brews 161090

4

(6 row(s) affected)

Store Books Sold
-- -----------
Eric the Read Books 76931
Barnum's 154125
News & Brews 161090
Doc-U-Mat: Quality Laundry and Books 581130
Fricative Bookshop 259060
Bookbeat 518080

(6 row(s) affected)

Examination of the query plan of the subquery approach shows:

 |--Compute Scalar(DEFINE:([Expr1006]=isnull([Expr1004], 0)))
 |--Nested Loops(Left Outer Join, OUTER REFERENCES:([st].[stor_id]))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([big_sales].[stor_id]))
 | |--Stream Aggregate(GROUP BY:([big_sales].[stor_id]))
 | | |--Clustered Index Scan(OBJECT:([pubs].[dbo].[big_sales].
 [UPKCL_big_sales]), ORDERED FORWARD)
 | |--Clustered Index Seek(OBJECT:([pubs].[dbo].[stores].[UPK_storeid] AS [st],
 SEEK:([st].[stor_id]=[big_sales].[stor_id]) ORDER
 |--Stream Aggregate(DEFINE:([Expr1004]=SUM([bs].[qty])))

ED FORWARD)

 |--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].
 [UPKCL_big_sales] AS [bs]),
 SEEK:([bs].[stor_id]=[st].[stor_id]) ORDERED FORWARD)

Whereas in the join query, we have:

 |--Stream Aggregate(GROUP BY:([st].[stor_name]) DEFINE:([Expr1004]=SUM([partialagg1005])))
 |--Sort(ORDER BY:([st].[stor_name] ASC))
 |--Nested Loops(Left Semi Join, OUTER REFERENCES:([st].[stor_id]))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([bs].[stor_id]))
 | |--Stream Aggregate(GROUP BY:([bs].[stor_id])
 DEFINE:([partialagg1005]=SUM([bs].[qty])))
 | | |--Clustered Index Scan(OBJECT:([pubs].[dbo].[big_sales].
 [UPKCL_big_sales] AS [bs]), ORDERED FORWARD)
 | |--Clustered Index Seek(OBJECT:([pubs].[dbo].[stores].
 [UPK_storeid] AS [st]),
 SEEK:([st].[stor_id]=[bs].[stor_id]) ORDERED FORWARD)
 |--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].
 [UPKCL_big_sales]),
 SEEK:([big_sales].[stor_id]=[st].[stor_id]) ORDERED FORWARD)

A solution using a join is more efficient. It does not require additional stream aggregate that
sums the big_sales.qty column required for subquery processing.

UNION vs. UNION ALL
Whenever possible use UNION ALL instead of UNION. The difference is that UNION has a
“side-effect” of eliminating all duplicate rows and sorting results, which UNION ALL doesn’t
do. Selecting a distinct result requires building a temporary worktable, storing all rows in it and
sorting before producing the output. (Displaying the showplan on a SELECT DISTINCT query
will reveal a stream aggregation is taking place, consuming as much as 30% of the resources

5

used to process the query.) In some cases that’s exactly what you need to do, then UNION is
your friend. But if you don’t expect any duplicate rows in the result set, then use UNION ALL.
It simply selects from one table or a join, and then selects from another, attaching results to the
bottom of the first result set. UNION ALL requires no worktable and no sorting (unless other
unrelated conditions cause that). In most cases it’s much more efficient. One more potential
problem with UNION is the danger of flooding tempdb database with a huge worktable. It may
happen if you expect a large result set from a UNION query.

Example
The following queries select ID for all stores in the sales table, which ships as-is with the
pubs database, and the ID for all stores in the big_sales table, a version of the sales table
that I populated with over 70,000 rows. The only difference between the two solutions is the
use of UNION versus UNION ALL. But the addition of the ALL keyword makes a big
difference in the query plan. The first solution requires stream aggregation and sorting the
results before they are returned to the client. The second query is much more efficient,
especially for large tables. In this example both queries return the same result set, though in a
different order. In our testing we had two temporary tables at the time of execution. Your
results may vary.

UNION Solution UNION ALL Solution
SELECT stor_id FROM big_sales
UNION
SELECT stor_id FROM sales

SELECT stor_id FROM big_sales
UNION ALL
SELECT stor_id FROM sales

|--Merge Join(Union)
 |--Stream Aggregate(GROUP BY:
 ([big_sales].[stor_id]))
 | |--Clustered Index Scan
 (OBJECT:([pubs].[dbo].
 [big_sales].
 [UPKCL_big_sales]),
 ORDERED FORWARD)
 |--Stream Aggregate(GROUP BY:
 ([sales].[stor_id]))
 |--Clustered Index Scan
 (OBJECT:([pubs].[dbo].
 [sales].[UPKCL_sales]),
 ORDERED FORWARD)

|--Concatenation
 |--Index Scan (OBJECT:([pubs].[dbo].
 [big_sales].[ndx_sales_ttlID]))
 |--Index Scan (OBJECT:([pubs].[dbo].
 [sales].[titleidind]))

Table 'sales'. Scan count 1, logical
reads 2, physical reads 0,
read-ahead reads 0.

Table 'big_sales'. Scan count 1, logical
reads 463, physical reads 0,
read-ahead reads 0.

Table 'sales'. Scan count 1, logical
reads 1, physical reads 0,
read-ahead reads 0.

Table 'big_sales'. Scan count 1, logical
reads 224, physical reads 0,
read-ahead reads 0.

Although the result sets in this example are interchangeable, you can see that the UNION ALL
statement consumed less than half of the resources that the UNION statement consumed. So be
sure to anticipate your result sets and in those that are already distinct, use the UNION ALL
clause.

6

Functions and Expressions that Suppress Indexes
When you apply built-in functions or expressions to indexed columns, the optimizer cannot use
indexes on those columns. Try to rewrite these conditions in such a way that index keys are not
involved in any expression.

Examples
You have to help SQL Server remove any expressions around numeric columns that form an
index. The following queries select a row from the table jobs by a unique key that has a
unique clustered index. If you apply an expression to the column, the index is suppressed. But
once you change the condition ‘job_id – 2 = 0’ to ‘job_id = 2’, the optimizer performs a seek
operation against the clustered index.

Query With Suppressed Index Optimized Query Using Index
SELECT *
FROM jobs
WHERE (job_id-2) = 0

SELECT *
FROM jobs
WHERE job_id = 2

|--Clustered Index Scan(OBJECT:
 ([pubs].[dbo].[jobs].
 [PK__jobs__117F9D94]),
 WHERE:(Convert([jobs].[job_id])-2=0))

|--Clustered Index Seek(OBJECT:
 ([pubs].[dbo].[jobs].
 [PK__jobs__117F9D94]),

 SEEK:([jobs].[job_id]=Convert([@1]))
 ORDERED FORWARD)

Note that a seek is much better than a
scan as in the previous query.

The following table contains more examples of queries that suppress an index on columns of
different type and how you can rewrite them for optimal performance.

Query With Suppressed Index Optimized Query Using Index

DECLARE @job_id VARCHAR(5)
SELECT @job_id = ‘2’
SELECT *
FROM jobs
WHERE CONVERT(VARCHAR(5),
 job_id) = @job_id

DECLARE @job_id VARCHAR(5)
SELECT @job_id = ‘2’
SELECT *
FROM jobs
WHERE job_id = CONVERT(
 SMALLINT, @job_id)

SELECT *
FROM authors
WHERE au_fname + ' ' + au_lname
 = 'Johnson White'

SELECT *
FROM authors
WHERE au_fname = 'Johnson'
 AND au_lname = 'White'

SELECT *
FROM authors
WHERE SUBSTRING(au_lname, 1, 2)
 = 'Wh'

SELECT *
FROM authors
WHERE au_lname LIKE 'Wh%'

CREATE INDEX employee_hire_date
ON employee (hire_date)
GO
-- Get all employees hired
-- in the 1st quarter of 1990:
SELECT *
FROM employee
WHERE DATEPART(year,
 hire_date) = 1990
 AND DATEPART(quarter,

CREATE INDEX employee_hire_date
ON employee (hire_date)
GO
-- Get all employees hired
-- in the 1st quarter of 1990:
SELECT *
FROM employee
WHERE hire_date >= ‘1/1/1990’
 AND hire_date < ‘4/1/1990’

7

 hire_date) = 1
-- Suppose that hire_date may
-- contain time other than 12AM
-- Who was hired on 2/21/1990?
SELECT *
FROM employee
WHERE CONVERT(CHAR(10),
 hire_date, 101)
 = ‘2/21/1990’

-- Suppose that hire_date may
-- contain time other than 12AM
-- Who was hired on 2/21/1990?
SELECT *
FROM employee
WHERE hire_date >= ‘2/21/1990’
 AND hire_date < ‘2/22/1990’

UPDATE…FROM and DELETE…FROM
T-SQL offers an extension to ANSI-SQL syntax for UPDATE and DELETE commands that
may be very efficient in many cases. It allows you to specify a FROM clause and join several
tables in an UPDATE or DELETE command.

Examples
In order to update the titleauthor table the ANSI SQL solution below executes two
subqueries, while the UPDATE…FROM command, shown later, replaces the subqueries with a
join.

UPDATE titleauthor
SET royaltyper = 90
WHERE au_id = (SELECT au_id FROM authors
 WHERE au_lname = 'Ringer' AND au_fname = 'Albert')
 AND title_id = (SELECT title_id FROM titles
 WHERE title = 'Life Without Fear')

Which yields a very complex query plan shown here:

|--Clustered Index Update(OBJECT:([pubs].[dbo].[titleauthor].[UPKCL_taind]),
 SET:([titleauthor].[royaltyper]=90))
 |--Top(ROWCOUNT est 0)
 |--Merge Join(Inner Join, MERGE:([Expr1014])=([titleauthor].[title_id]),
 RESIDUAL:([titleauthor].[title_id]=[Expr1014]))
 |--Assert(WHERE:(If ([Expr1013]>1) then 0 else NULL))
 | |--Stream Aggregate(DEFINE:([Expr1013]=Count(*),
 [Expr1014]=ANY([titles].[title_id])))
 | |--Index Seek(OBJECT:([pubs].[dbo].[titles].[titleind]),
 SEEK:([titles].[title]='Life Without Fear')
 ORDERED FORWARD)
 |--Sort(ORDER BY:([titleauthor].[title_id] ASC))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([Expr1012]))
 |--Assert(WHERE:(If ([Expr1011]>1) then 0 else NULL))
 | |--Stream Aggregate(DEFINE:([Expr1011]=Count(*),
 [Expr1012]=ANY([authors].[au_id])))
 | |--Index Seek(OBJECT:([pubs].[dbo].[authors].[aunmind]),
 SEEK:([authors].[au_lname]='Ringer' AND
 [authors].[au_fname]='Albert') ORDERED FORWARD)
 |--Index Seek(OBJECT:([pubs].[dbo].[titleauthor].[auidind]),
 SEEK:([titleauthor].[au_id]=[Expr1012]) ORDERED FORWARD)

On the other hand, we can exploit the Transact-SQL extension allowing FROM in the
UPDATE statement:

8

UPDATE titleauthor
SET royaltyper = 90
FROM authors a, titles t
WHERE titleauthor.au_id = a.au_id
 AND a.au_lname = 'Ringer'
 AND a.au_fname = 'Albert'
 AND titleauthor.title_id = t.title_id
 AND t.title = 'Life Without Fear'

Which yields a much simpler query plan:

|--Clustered Index Update(OBJECT:([pubs].[dbo].[titleauthor].[UPKCL_taind]),
 SET:([titleauthor].[royaltyper]=90))
 |--Top(ROWCOUNT est 0)
 |--Table Spool
 |--Nested Loops(Inner Join, OUTER REFERENCES:([titleauthor].[title_id]))
 |--Nested Loops(Inner Join, OUTER REFERENCES:([a].[au_id]))
 | |--Index Seek(OBJECT:([pubs].[dbo].[authors].[aunmind] AS [a]),
 SEEK:([a].[au_lname]='Ringer' AND [a].[au_fname]='Albert')
 ORDERED FORWARD)
 | |--Index Seek(OBJECT:([pubs].[dbo].[titleauthor].[auidind]),
 SEEK:([titleauthor].[au_id]=[a].[au_id]) ORDERED FORWARD)
 |--Index Seek(OBJECT:([pubs].[dbo].[titles].[titleind] AS [t]),
 SEEK:([t].[title]='Life Without Fear' AND
 [t].[title_id]=[titleauthor].[title_id]) ORDERED FORWARD)

In the next example, we update a row in the titles table that has a specific order recorded in the
sales table. Note that ANSI SQL solution has to execute essentially the same subquery twice,
because column title_id is needed for the WHERE clause and the column qty is used in the SET
clause.

ANSI SQL:

UPDATE titles
SET ytd_sales = ytd_sales + (
 SELECT qty
 FROM sales s
 WHERE s.stor_id = '9999'
 AND s.ord_num = '999999')
WHERE title_id = (
 SELECT title_id
 FROM sales s
 WHERE s.stor_id = '9999'
 AND s.ord_num = '999999')

The query plan for the ANSI SQL query:

 |--Clustered Index Update(OBJECT:([pubs].[dbo].[titles].[UPKCL_titleidind]),
SET:([titles].[ytd_sales]=[Expr1008]))
 |--Top(1)
 |--Compute Scalar(DEFINE:([Expr1008]=[titles].[ytd_sales]+Convert([Expr1010])))
 |--Nested Loops(Left Outer Join)
 |--Nested Loops(Inner Join, OUTER REFERENCES:([Expr1012]))
 | |--Assert(WHERE:(If ([Expr1011]>1) then 0 else NULL))
 | | |--Stream Aggregate(DEFINE:([Expr1011]=Count(*),
 | | | [Expr1012]=ANY([s].[title_id])))
 | | |--Clustered Index Seek(OBJECT:([pubs].[dbo].

9

Kevin Kline
The I/O statistics tell a somewhat murkier tale:
1st Update with queries:
Table 'titleauthor'. Scan count 1, logical reads 3, physical reads 1, read-ahead reads 0.
Table 'authors'. Scan count 1, logical reads 1, physical reads 0, read-ahead reads 0.
Table 'titles'. Scan count 1, logical reads 1, physical reads 1, read-ahead reads 0.

2nd Update with Join:
Table 'titleauthor'. Scan count 1, logical reads 3, physical reads 0, read-ahead reads 0.
Table 'Worktable'. Scan count 1, logical reads 3, physical reads 0, read-ahead reads 0.
Table 'titles'. Scan count 2, logical reads 2, physical reads 0, read-ahead reads 0.
Table 'authors'. Scan count 1, logical reads 1, physical reads 0, read-ahead reads 0.

 | | | [sales].[UPKCL_sales] AS [s]), SEEK:
 | | | ([s].[stor_id]='9999' AND [s].
 | | | [ord_num]='999999') ORDERED FORWARD)
 | |--Clustered Index Seek(OBJECT:([pubs].[dbo].[titles].
 | | [UPKCL_titleidind]), SEEK:([titles].[title_id]=
 | | [Expr1012]) ORDERED FORWARD)
 |--Assert(WHERE:(If ([Expr1009]>1) then 0 else NULL))
 |--Stream Aggregate(DEFINE:([Expr1009]=Count(*),
 | [Expr1010]=ANY([s].[qty])))
 |--Clustered Index Seek(OBJECT:([pubs].[dbo].[sales].
 | [UPKCL_sales] AS [s]), SEEK:([s].[stor_id]='9999'
 | AND [s].[ord_num]='999999') ORDERED FORWARD)

Now compare the expansive ANSI SQL update operation show above and the resultant query
plan with the SQL Server Transact-SQL extension:

UPDATE titles
SET ytd_sales = ytd_sales + s.qty
FROM sales s
WHERE titles.title_id = s.title_id
 AND s.stor_id = '9999'
 AND s.ord_num = '999999'

This produces a query plan with only seven major operations where the ANSI SQL plan had
12:

 |--Clustered Index Update(OBJECT:([pubs].[dbo].[titles].[UPKCL_titleidind]),
 | SET:([titles].[ytd_sales]=[Expr1005]))
 |--Table Spool
 |--Compute Scalar(DEFINE:([Expr1005]=[titles].[ytd_sales]+Convert([s].[qty])))
 |--Top(ROWCOUNT est 0)
 |--Nested Loops(Inner Join, OUTER REFERENCES:([s].[title_id]))
 |--Clustered Index Seek(OBJECT:([pubs].[dbo].[sales].
 | [UPKCL_sales] AS [s]), SEEK:([s].[stor_id]='9999' AND
 | [s].[ord_num]='999999') ORDERED FORWARD)
 |--Clustered Index Seek(OBJECT:([pubs].[dbo].[titles].
 | [UPKCL_titleidind]), SEEK:([titles].[title_id]=[s].
 | [title_id]) ORDERED FORWARD)

The following queries demonstrate you can apply the same technique to DELETE commands.

In ANSI SQL:

DELETE sales
WHERE EXISTS (
 SELECT 1
 FROM titles t
 WHERE sales.title_id = t.title_id
 AND t.title = 'Life Without Fear')

Compared to the somewhat shorter Transact-SQL extension:

DELETE sales
FROM titles t
WHERE sales.title_id = t.title_id
 AND t.title = 'Life Without Fear'

10

SET NOCOUNT ON
The phenomenon of speeding up T-SQL code by using SET NOCOUNT ON was discussed at
length in the last white paper; however, it bears repeating. You have already noticed that
successful queries return a system message about the number of rows that they affect. In many
cases you don’t need this information. Command SET NOCOUNT ON allows you to suppress
the message for all subsequent transactions in your session, until you issue the SET NOCOUNT
OFF command. We know that this is a double negative, but T-SQL was not created by English
majors.

This option has more than a cosmetic effect on the output generated by your script. It reduces
the amount of information passed from the server to the client. Therefore, it helps to lower
network traffic and improves the overall response time of your transactions. Time to pass a
single message may be negligible, but think about a script that executes some queries in a loop
and sends Kilobytes of useless information to a user.

As an example, the enclosed file has a T-SQL batch that inserts 9999 rows into the
big_sales table.

insert into big_sales tbl.sql

When run with SET NOCOUNT OFF, the elapsed time was 5176 milliseconds. When run with
SET NOCOUNT ON, the elapsed time was 1620 milliseconds! Consider adding SET
NOCOUNT ON at the beginning of every stored procedure and script that doesn’t require row
counts in the output.

TOP AND SET ROWCOUNT
The TOP clause of the SELECT statement limits the number of rows returned by a single
query, while the SET ROWCOUNT limits the number of rows affected by all subsequent
queries. These commands provide great efficiencies in numerous programming tasks.

SET ROWCOUNT sets the maximum number of rows that may be affected by a SELECT,
INSERT, UPDATE, or DELETE statement. The setting is immediately effective upon execution
of the command and only impacts the current session. In order to remove this limit, execute
SET ROWCOUNT 0.

Some practical tasks are much more efficient to program with TOP or SET ROWCOUNT than
with standard SQL commands. Let us demonstrate it on several examples.

TOP n
One of the most popular queries in almost any database is a request for the top N items from a
list. In case of the pubs database we could search for the top 5 best-selling titles. Compare the
three solutions – with TOP, with SET ROWCOUNT and using ANSI SQL.

11

Pure ANSI SQL:

SELECT title, ytd_sales
FROM titles a
WHERE (SELECT COUNT(*)
 FROM titles b
 WHERE b.ytd_sales >
 a.ytd_sales
) < 5
ORDER BY ytd_sales DESC

The pure ANSI SQL solution executes a correlated subquery that may be inefficient, especially
in this case, where there is no index on ytd_sales to support it. Additionally, the pure
ANSI SQL command does not filter out NULL values in ytd_sales, nor does it
discriminate in the case of a tie between multiple titles.

Using SET ROWCOUNT:

SET ROWCOUNT 5

SELECT title, ytd_sales
FROM titles
ORDER BY ytd_sales DESC

SET ROWCOUNT 0

Using TOP n:

SELECT TOP 5 title, ytd_sales
FROM titles
ORDER BY ytd_sales DESC

The second solution uses SET ROWCOUNT to stop the SELECT query, while the third
solutions use TOP n to terminate after it has found the first 5 rows. In this case, we also have
an ORDER BY clause that forces sorting of the whole table before results may be retrieved.
Both queries have virtually identical query plans. However, the key advantage of TOP over
SET ROWCOUNT is that SET must process the worktable required by an ORDER BY clause
where TOP does not.

On a large table we would create an index on ytd_sales to avoid sorting. The query would then
use the index to find the first five rows and stop. Compare this to the first solution that would
scan the whole table and execute a correlated subquery for every row. The difference in
performance is negligible on a small table. But on a large table it may amount to hours of
processing time for the first solution versus seconds for the last two solutions.

When determining the needs of your query, consider whether you only need to review a few of
the rows retrieved. If that is the case, the TOP clause will be a valuable time saver.

12

Assumptions About Temporary Table Size
Temporary tables created at run-time within a stored procedure can be problematic. In SQL
Server 7.0, the optimizer was unable to accurately estimate the size of a temporary table,
instead assuming that the temporary table had only 100 rows and uses 10 data pages.
Obviously, this may be wrong in many cases. Now, SQL Server 2000 is stronger with
temporary tables. However, the same advice holds true – create and populate the temp table,
including building indexes and constraints, before executing any conditional processing on the
temp table.

One problem you may encounter is that the optimizer may refuse to recognize indexes and
foreign key constraints that you build on dynamic temporary tables (those created with # or
##). It will recognize constraints and indexes built explicitly using a CREATE TABLE
statement in the tempdb database, as well as non-foreign key constraints on dynamically built
temporary tables.

Don’t forget that all transactions against temporary tables are logged in the tempdb
transaction log. Although logging has reduced overhead in tempdb and may be as much as
four times as fast as a comparable transaction against a permanent table, you should still take
this into account when sizing the tempdb transaction log.

In order to allow the optimizer to take actual table size into account you can use a technique
where you split your code into a separate stored procedures or T-SQL batches, especially by
explicitly creating the temp table and its supporting indexes before any conditional code is
executed. The optimizer will then know the size of the temporary table and whether any good
indexes exist before the procedure is executed and will choose the best plan based on the
accurate information.
Example:

13

Table Created in the Same Script Table Passed to a Stored Procedure
CREATE TABLE #pub (
 pub_name VARCHAR(40) NOT NULL,
 title VARCHAR(80) NULL,
 employee VARCHAR(51) NULL
)
GO

INSERT #pub
SELECT p.pub_name,
 t.title,
 e.fname + ' ' + e.lname
FROM publishers p,
 titles t,
 employee e
WHERE p.pub_id *= t.pub_id
 AND p.pub_id *= e.pub_id

CREATE CLUSTERED INDEX pubind
ON #pub (pub_name)

CREATE TABLE #pub (
 pub_name VARCHAR(40) NOT NULL,
 title VARCHAR(80) NULL,
 employee VARCHAR(51) NULL
)
GO
CREATE PROC get_pub
AS
SELECT *
FROM #pub
WHERE pub_name =
 'New Moon Books'
GO
INSERT #pub
SELECT p.pub_name,
 t.title,
 e.fname + ' ' + e.lname
FROM publishers p,
 titles t,

SELECT *
FROM #pub
WHERE pub_name =
 'New Moon Books'
GO
DROP TABLE #pub
GO

 employee e
WHERE p.pub_id *= t.pub_id
 AND p.pub_id *= e.pub_id

CREATE CLUSTERED INDEX pubind
ON #pub (pub_name)

EXEC get_pub WITH RECOMPILE
GO
DROP TABLE #pub
GO
DROP PROC get_pub
GO

-- plan of the highlighted SELECT:

 |--Table Scan(OBJECT:([tempdb].[dbo].
 [#pub_01D]),
 WHERE:([#pub].[pub_name]=
 'New Moon Books'))

-- plan of the highlighted SELECT:

 |--Clustered Index Scan(OBJECT:

 ([tempdb].[dbo].[#pub_01D].
 [pubind]))

Loop Optimization

More Invariant Operations Outside of the Loop
If you are familiar with other programming languages, then you are probably aware of loop
optimization techniques. You should try to put all operations outside of the loop if they don’t
change inside. This reduces the amount of unnecessary repetitive work. SQL Server optimizer
doesn’t automatically recognize such inefficiencies and clean the code for you (compilers of
some other languages do). You have to write efficient loops yourself as in the following
example.

These scripts print a table of square roots for all numbers from 1 to 100.

Inefficient Loop Operations Optimized Script

SET NOCOUNT ON
DECLARE @message VARCHAR(25),
 @counter SMALLINT
SELECT @counter = 0
WHILE @counter < 100
BEGIN
 SET @counter = @counter + 1
 SET @message = REPLICATE('-', 25)
 PRINT @message
 SET @message =
 str(@counter, 10) +
 str(SQRT(CONVERT(FLOAT,
 @counter)), 10, 4)
 PRINT @message
END

SET NOCOUNT ON
DECLARE @separator VARCHAR(25),
 @message VARCHAR(25),
 @counter SMALLINT
SET @counter = 0,
 @separator = REPLICATE('-', 25)
WHILE @counter < 100
BEGIN
 SET @counter = @counter + 1
 PRINT @separator
 SET @message =
 Str(@counter, 10) +
 Str(SQRT(CONVERT(FLOAT,
 @counter)), 10, 4)
 PRINT @message
END

Elapsed time: 40 ms Elapsed time: 30 ms

The second script executes function REPLICATE(‘-‘, 25) only once, compared to 100 times in
the first script. Results produced by both scripts are identical:

14

 1 1.0000

 2 1.4142

 3 1.7321

 4 2.0000
 . . .

 99 9.9499

 100 10.0000

Replace Loops With Queries
It may often be possible to replace loops with SQL queries. A single query is almost always
more efficient than multiple iterations because relational databases based upon set operations.

For instance, we could rewrite the loop shown in the previous example as follows:

SELECT REPLICATE('-', 25) + '
' + STR((a.id - 1) * 10 + b.id, 10)
 + STR(SQRT(CONVERT(FLOAT, (a.id - 1) * 10 + b.id)), 10, 4)
FROM sysobjects a, sysobjects b
WHERE a.id <= 10
 AND b.id <= 10

This command executes in 0 ms compared to 30 ms and 40 ms for each of the earlier scripts!

This script uses the fact that there are rows in table sysobjects with id column values of 1
through 10. If we join this table to itself and apply filters on column id values to take 10 rows
from one instance of sysobjects and 10 rows from the second instance, then we get 100
rows (10 times 10). In order to produce numbers 1 through 100 we use expression (a.id–
1)*10+b.id. The code may look tricky, but it returns the same results much faster than a loop.

Querying Against Composite Keys
In an earlier white paper and e-seminar, I proposed that composite keys are problematic for
SQL Server. Composite indexes, as you will recall, are composed of several columns of a
table. The problem is that composite indexes are used from leftmost column to right.

The following examples show that SQL Server 2000 now handles poorly ordered WHERE
clauses much better than earlier versions of the product. That is, in earlier versions of the
product SQL Server might ignore indexes when all the columns of an index were addressed in
the WHERE clause solely because the columns were not referenced in the same order as they
appeared in the index. This is no longer a problem in SQL Server 2000. However, the
problem

Consider this composite index that contains three columns:

 ALTER TABLE add CONSTRAINT [UPKCL_sales] PRIMARY KEY CLUSTERED

15

 ([stor_id], [ord_num], [title_id])

Depending on your WHERE clause conditions, SQL Server may use all or fewer columns of
the index, or not use the index at all, as shown below:

Table 1. Usage of Composite Key Columns

WHERE Clause
Conditions

Query Plan

WHERE stor_id = @a
 AND ord_num = @b
 AND title_id = @c

|--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].[UPKCL_big_sales]),
 SEEK:([big_sales].[stor_id]=[@a]
 AND [big_sales].[ord_num]=[@b]
 AND [big_sales].[title_id]=[@c])
 ORDERED FORWARD)

WHERE stor_id = @a
 AND ord_num = @b

|--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].[UPKCL_big_sales]),
 SEEK:([big_sales].[stor_id]=[@a]
 AND [big_sales].[ord_num]=[@b]
 ORDERED FORWARD)

WHERE ord_num = @b
 AND stor_id = @a

|--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].[UPKCL_big_sales]),
 SEEK:([big_sales].[stor_id]=[@a]
 AND [big_sales].[ord_num]=[@b])
 ORDERED FORWARD)

Compare this to the previous query and you can see they are the same plan.
WHERE stor_id = @a |--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].[UPKCL_big_sales]),

 SEEK:([big_sales].[stor_id]=[@a]
 ORDERED FORWARD)

WHERE stor_id = @a
 AND title_id = @c

|--Clustered Index Seek(OBJECT:([pubs].[dbo].[big_sales].[UPKCL_big_sales]),
 SEEK:([big_sales].[stor_id]=[@a]),
 WHERE:([big_sales].[title_id]=[@c])
 ORDERED FORWARD)
This query was not able to use the third column of the clustered index and instead
had to use a separate nonclustered index on title_id.

WHERE ord_num = @b
 AND title_id = @c

|--Bookmark Lookup(BOOKMARK:([Bmk1000]), OBJECT:([pubs].[dbo].[big_sales]))
 |--Index Seek(OBJECT:([pubs].[dbo].[big_sales].
 [ndx_sales_ttlID]),
 SEEK:([big_sales].[title_id]=[@c]),
 WHERE:([big_sales].[ord_num]=[@b])
 ORDERED FORWARD)

This query was not able to use the clustered index at all, but was able to find a highly
performant alternate plan.

The key point to remember is that you should know the order of columns appearing within a
composite index. Once you know the order of the columns, you should always structure your
WHERE clause to analyze columns starting with the leftmost column in the composite index
and work towards the right.

Summary
This white paper has presented a collection of tips and trick to help you get the most out of
your queries on a SQL Server 2000 database. Some ideas presented in the white paper include:

• Subquery optimization

• UNION versus UNION ALL

• Functions and expressions that suppress indexes

16

• The advantages of UPDATE…FROM and DELETE…FROM over ANSI standard syntax

• SET NOCOUNT ON

• TOP and SET ROWCOUNT

• Temporary table considerations

• Loop optimization

• Recap of querying against concatenated keys

And the key thing to remember in summary is to test, test, retest!

About Quest Software
Quest Software, Inc. is a leading provider of performance management solutions designed to
maintain the integrity of mission-critical business transactions and maximize the performance
of enterprise applications. Our solutions address needs of 24x7x365 businesses where demands
on information technology infrastructure are high and tolerance for downtime is low. The
Internet has propagated the expectation of instant access to information, and Quest delivers
solutions that meet this demand. Quest Software helps more than 100,000 users achieve best
possible performance from enterprise systems so end user experience is positive. We have
offices worldwide and over 1,200 employees. For more information, visit www.quest.com.

© 2002 Quest Software, Inc. All rights reserved.

17

http://www.quest.com/

	Microsoft T-SQL Performance Tuning
	Part 3: Query Optimization Strategies
	Microsoft T-SQL Performance Tuning
	Part 3: Query Optimization Strategies
	Introduction
	Overview
	Subqueries Optimization
	Example

	UNION vs. UNION ALL
	Example

	Functions and Expressions that Suppress Indexes
	Examples

	UPDATE…FROM and DELETE…FROM
	Examples

	SET NOCOUNT ON
	TOP AND SET ROWCOUNT
	TOP n

	Assumptions About Temporary Table Size
	Loop Optimization
	More Invariant Operations Outside of the Loop
	Replace Loops With Queries

	Querying Against Composite Keys

	Summary
	About Quest Software

